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Mechanism-driven therapies for hypertrophic 
cardiomyopathy
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Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease that manifests with left ventricular 
hypertrophy in the absence of an identifiable cause. HCM was initially viewed as a disease of the sarcomere, as several 
mutations in various contractile proteins have been identified in familial cases. However, this ideology is being contested as 
many cases do not carry sarcomere mutations, and not all sarcomere-mutation carriers develop HCM. The clinical spectrum 
is vast, ranging from individuals who are completely asymptomatic to those who manifest chest pain, exercise intolerance, 
heart failure, and arrhythmia. Current management with β-blockers, calcium channel antagonist, and antiarrhythmics is 
mainly aimed at relieving symptoms and do not address the underlying pathophysiology. Crucially, while mortality remains 
low, a significant number of patients experience death or hospitalization due to ventricular tachycardia, heart failure, or 
stroke. Recently, several targeted approaches have been undertaken to attenuate pathological features, including myocardial 
fibrosis, cardiomyocyte hypercontractility, perturbed metabolism, and oxidative stress. While most of these targeted therapies 
have shown promise in preclinical animal models, their translation into clinical cohorts has been disappointing, with the 
exception of cardiac myosin inhibitor, mavacamten. Considering conventional management strategies do not improve long-
term prognosis, there is an unmet need to develop mechanism-driven treatments for HCM. While this would require in-
depth understanding of the causal effects of each mutation, models based on human physiology may provide unprecedented 
opportunity to interrogate the pathogenicity of novel mutations and to develop mechanism-driven therapies for improving 
health outcomes in HCM patients.
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Introduction 
Hypertrophic cardiomyopathy (HCM) is the most common 
inherited cardiac disease with a prevalence of 1:200-1:500, that 
manifests as left ventricular hypertrophy (LVH) in the absence 
of an identifiable cause (Maron, 2018). Approximately 60% of 
HCM cases have a clear familial link with missense variants 
in MYH7 and truncating variants in MYBPC3 accounting for 
most familial cases (Marian and Braunwald, 2017; Sabater-
Molina et al., 2018). While this may lend support that HCM is a 
disease of the sarcomere, the absence of sarcomere mutations in 
a vast number of cases contests this ideology and may explain 
the heterogeneous nature of the disease (Maron et al., 2019). 
Indeed, the clinical spectrum of HCM is vast, ranging from 
cases who are completely asymptomatic to those who present 

with chest pain, shortness of breath, fatigue, and syncope, with 
a small subset experiencing sudden cardiac death, in particular 
children and athletes (Ostman-Smith et al., 2008; Maron et al., 
2009). HCM patients are grouped into two subsets; those with 
LV outflow tract (LVOT) obstruction and those without. LVH 
can precipitate LVOT obstruction at rest or with provocation, 
reduce LV compliance, and induce diastolic dysfunction. 
As expected, patients with obstructive HCM (oHCM) are 
associated with more severe symptoms and adverse outcomes, 
and though nonobstructive HCM (nHCM) was initially viewed 
as a benign condition with minimal symptoms, recent findings 
support high rates of adverse clinical events, comparable to 
those with oHCM (Lu et al., 2018; Maron et al., 2018a). 
    The presence or absence of obstruction guides clinical 
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management. For patients with oHCM, measures that increase 
cardiac preload and afterload, and those that reduce cardiac 
contractility are favored. Pharmacotherapies like β-blockers, 
calcium channel antagonists, and antiarrhythmics represent the 
latter, where the LVOT obstruction is attenuated by reducing 
cardiac inotropy and chronotropy, reducing myocardial 
oxygen demand and enhancing diastolic filling. Invasive 
septal reduction strategies (either by surgical myectomy or 
alcohol septal ablation) may be considered for patients whose 
symptoms are refractory to pharmacotherapy (Rovner et al., 
2003), although this can increase the risk of complete heart 
blockage due to damage of bundle branches (Talreja et al., 
2004). Interventions for patients with nHCM mainly attempt 
to manage arrhythmias and improve diastolic filling; however, 
these approaches are less effective than for those with oHCM 
(Matsubara et al., 1995; Olivotto et al., 2018). Ultimately, these 
conventional management strategies aim to relieve symptoms 
and are unable to reverse pathological features that accompany 
LVH, including cardiomyocyte hypertrophy and disarray, or 
interstitial fibrosis (Cui et al., 2021). Crucially, despite low 
incidence of mortality, long-term follow-up studies reveal 
poor prognosis in HCM patients with ~50% experiencing 
death or hospitalization due to ventricular tachycardia, heart 
failure, or stroke (Sugiura et al., 2022), which is compounded 
by the modest efficacy and tolerability of conventional 
pharmacotherapies (Spoladore et al., 2012). As such, there is 
an unmet need to develop new treatments to improve health 
outcomes in HCM patients. 
    Proteomic analysis of myocardial tissue from HCM 
patients has revealed alterations in various cellular pathways, 
including metabolism, muscle contraction, calcium regulation, 
and oxidative stress (Coats et al., 2018), and recent attempts 
to target some of these pathways have been promising. In 
this review, we discuss conventional pharmacotherapies for 
managing HCM and draw special attention to new treatment 
strategies that can attenuate pathological features, and highlight 
the use of human models for interrogating the pathogenicity of 

novel mutations with the aim of developing mechanism-driven 
therapies for improving health outcomes in HCM patients.

Conventional pharmacotherapies
Since it was first described over 60 years ago, the clinical 
management of HCM has centered on relieving symptoms and 
improving quality of life. This section focuses on non-selective 
pharmacological modalities that are used in line with existing 
treatment guidelines.  
β-blockers 
The use of non-vasodilating β-adrenergic blockers is one 
of the oldest strategies for treating symptomatic cases and 
represents the mainstay of therapy (Figure 1). The beneficial 
effects of β-blockers are mediated by sympathetic modulation 
of heart rate, contractility, and stiffness, which in turn improve 
LV relaxation and increases time for diastolic filling. Several 
β-blockers have been evaluated over time with some found to 
be more effective than others (Cohen and Braunwald, 1968; 
Hubner et al., 1973). For HCM presenting in childhood (which 
is associated with a higher mortality than when presented 
in adulthood), high-dose propranolol treatment drastically 
reduced the risk of death compared to those who were managed 
conventionally (Ostman-Smith et al., 1999). Due to their 
negative chronotropic effects, β-blockers are unable to promote 
improvements in exercise capacity (Ikram and Fitzpatrick, 1981; 
Gilligan et al., 1993); however, recent studies with metoprolol 
have shown that this agent can reduce obstruction at rest and 
during exercise (Dybro et al., 2021) as well as improve exercise 
hemodynamics (Dybro et al., 2022) and LV global longitudinal 
strain (Dybro et al., 2023), which imply improvements in 
LV systolic function. While these studies suggest β-blocker 
treatment is effective, it is unclear whether these agents can 
improve long-term prognosis of HCM patients. Moreover, it is 
unlikely these agents can exert meaningful benefits in patients 
with more severe gradients and heart failure status (Monda et 
al., 2022) or attenuate adverse ventricular remodeling (Dybro et 

Figure 1. Schematic illustrating the pathophysiology of HCM, whereby pathogenic variants potentiate hypertrophic and fibrotic responses 
through abnormal sarcomere mechanics, impaired energetics, calcium mishandling, and oxidative stress. Several therapeutic modalities (blue) 
have been developed to target these maladaptive processes. Abbreviations: NCX- Na+/Ca2+ exchanger; Ang II- angiotensin II; AT1R- angiotensin 
II receptor type 1; MR- mineralocorticoid receptor; NAC- N-acetylcysteine; ROS- reactive oxygen species; TGF-β- transforming growth factor 
beta  
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al., 2021).       
Calcium channel antagonists
An alternative to β-blocker therapy is the use of the non-
dihydropyridine calcium channel antagonist, verapamil, which 
has been shown to relieve symptoms in patients with different 
degrees of disease severity (Rosing et al., 1980; Gilligan et al., 
1993). Due to its negative inotropic and chronotropic effects, 
verapamil mediates its action by improving diastolic filling, 
which has been attributed to reduction in diastolic asynchrony, 
rather than changes in diastolic velocities of the myocardial 
fibers (Rosing et al., 1985; Pacileo et al., 2000). Whether 
verapamil can improve exercise capacity remains controversial 
(Rosing et al., 1980; Rosing et al., 1985; Gilligan et al., 
1993). The rationale for using calcium channel antagonists 
to treat the disease is supported by several studies that report 
intracellular calcium handling abnormalities in the setting of 
HCM (Figure 1). However, despite promoting better therapeutic 
outcomes than β-blockers (as suggested by comparative 
studies), verapamil is contraindicated for patients at high risk 
for adverse electrophysiological events, atrioventricular block, 
and sinus arrest (Rosing et al., 1985). Diltiazem is another 
calcium channel antagonist that has been shown to improve 
LV relaxation and diastolic filling without altering systolic 
function in HCM patients (Suwa et al., 1984; Iwase et al., 
1987). Though it is considered to have a more favorable safety 
profile than verapamil, diltiazem can increase pulmonary artery 
wedge pressure, which is likely due to the combined action 
of a negative inotropic effect with no improvements in LV 
compliance, and this may increase risk of pulmonary congestion 
(Betocchi et al., 1996). Another strategy to prevent calcium 
overload in cardiomyocytes is by inhibiting the late sodium 
current (INa,late), which is enhanced in the setting of HCM and 
facilitates the exchange of intracellular sodium for extracellular 
calcium (Figure 1). However, the INa,late inhibitor, ranolazine, 
was unable to improve diastolic function, exercise capacity, 
biomarker levels, or quality of life, despite demonstrating 
acceptable safety profiles and reducing premature ventricular 
complex burden (Olivotto et al., 2018).
Antiarrhythmics 
Antiarrhythmics, either alone or in combination with other 
agents, have been shown to decrease pressure gradients through 
their negative inotropic and lusitropic properties (Pollick, 1988; 
Cokkinos et al., 1989; Hamada et al., 1997). In one study, the 
Class 1a antiarrhythmic, disopyramide, relieved symptoms in 
patients with oHCM by improving diastolic function through 
afterload reduction but had minimal effect on patients with 
nHCM (Matsubara et al., 1995). Similarly, cibenzoline was 
shown to reduce pressure gradients in patients with oHCM 
(Hamada et al., 1997) by reducing diastolic pressures and 
attenuating diastolic dysfunction (Hamada et al., 2001; Hamada 
et al., 2005; Hamada et al., 2007). Although an increase in 
exercise capacity has been reported following disopyramide 
treatment (Pollick, 1988), whether improvements in diastolic 
function truly translate to better exercise tolerance requires 
validation in larger cohorts. Despite promoting substantial 
functional improvements in most symptomatic cohorts, 
antiarrhythmics may promote early incidence of sudden cardiac 
death by triggering malignant arrhythmias or conduction 
abnormalities, especially when diastolic filling is reduced post-
treatment (Fananapazir et al., 1991). 
     In summary, these conventional pharmacotherapies have 
been shown to relieve symptoms in several small cohorts. 
However, many of these studies were underpowered and 
employed surrogate endpoints, such as change in LVOT 
gradients or exercise tolerance; and hence, it has been difficult 
to assess the true impact of these agents on long-term health 
outcomes in patients. Strikingly, recent findings imply these 

agents may be ineffective in the long-term as a significant 
number of patients who were on these medications experienced 
HCM-related adverse events (Sugiura et al., 2022). While this 
calls for adequately designed clinical trials, the inclusion of 
functional imaging techniques, genetic information, and hard 
endpoints should be considered when determining the efficacy 
of novel treatments in future. 

Mechanism-driven therapies
Several approaches have been undertaken to target various 
pathological features of HCM. This section focuses on therapies 
designed to attenuate myocardial fibrosis, oxidative stress, 
impaired myocardial energetics, and hypercontractility. 
Angiotensin receptor blockers
Myocardial fibrosis is an independent predictor of adverse 
outcomes in HCM patients (O'Hanlon et al., 2010; Raman et 
al., 2019); and hence, it is not surprising that attempts have 
been made to prevent the development of fibrosis in the setting 
of HCM. Elevated levels of transforming growth factor beta-
1 (TGF-β1) and its receptor were first identified in ventricular 
biopsies from HCM patients, suggestive of its involvement in 
disease pathogenesis (Li et al., 1997; Li et al., 1998). Indeed, 
the activation of TGF-β signaling in non-myocytes mediates 
an increase in fibrosis, which may contribute to diastolic 
dysfunction and heart failure in mice with HCM (Teekakirikul 
et al., 2010) (Figure 1). Interestingly, treatment with the 
angiotensin II type 1 receptor antagonist, losartan, prevented 
the development of LVH and fibrosis in these mice, but only 
if administered prior to the onset of LVH. These findings 
support the use of angiotensin receptor blockers (ARBs) to treat 
patients with less established HCM, and consistently, valsartan 
improved cardiac structure and function in patients with 
early-stage HCM (Ho et al., 2021). In another study, losartan 
attenuated progression of LVH and fibrosis in patients who were 
mostly asymptomatic (Shimada et al., 2013). On the contrary, 
losartan was unable to attenuate LVH (Axelsson et al., 2015) or 
improve cardiac function and exercise capacity in patients with 
overt HCM (Axelsson et al., 2016). 
     The patient genotype could be a major determinant of the 
response to ARBs, as though candesartan was able to promote 
LVH regression, and improve LV function and exercise 
tolerance in carriers with MYH7 mutations, it had moderate 
effects in carriers of MYBPC3 mutations and no effect in those 
with TNNI3 (troponin I) mutations (Penicka et al., 2009). It 
can be speculated the differential ARB response observed here 
is governed by TGF-β signaling, as mice with different HCM-
causing mutations differed in several properties, with only 
those with troponin T mutations demonstrating a biosignature 
consistent with elevated TGF-β signaling (Vakrou et al., 2018). 
While this may imply elevated TGF-β signaling underpins the 
pathophysiology in specific genetic subgroups, plasma analysis 
confirmed this pathway is generally upregulated in HCM 
patients when compared to those presenting with hypertensive 
LVH (Shimada et al., 2021) and can also serve as a predictor of 
major adverse cardiovascular events (Shimada et al., 2022).  
Mineralocorticoid receptor antagonist
In certain cases, myocardial fibrosis has been found to be an 
early manifestation in patients who are yet to develop LVH, 
where substantial scar formation precipitates arrhythmia or 
progressive heart failure in the absence of LVOT obstruction. 
Aldosterone is thought to be a critical mediator of cardiac 
hypertrophy and fibrosis as it is elevated in patient myocardium, 
evokes a hypertrophic response in rat cardiomyocytes, and 
promotes collagen and TGF-β expression in rat fibroblasts 
(Tsybouleva et al., 2004) (Figure 1). Interestingly, the 
mineralocorticoid receptor (MR) antagonist, spironolactone, 
attenuated fibrosis, cardiomyocyte disarray, and diastolic 
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dysfunction in mice (Tsybouleva et al., 2004), supporting 
the need for clinical trials to evaluate the potential beneficial 
effects of MR blockade in the setting of HCM. However, 
spironolactone was unable to attenuate fibrosis, nor improve LV 
remodeling and functional capacity in a small cohort of patients 
with or without LVOT obstruction (Maron et al., 2018b).  
Antioxidants
The occurrence of LVH and fibrosis are considered secondary 
to the activation of numerous mitotic pathways, including 
those mediated by oxidative stress (Figure 1). Consistent with 
being a critical mediator of cardiac hypertrophy and fibrosis 
(Ramachandra et al., 2021a), oxidative stress is elevated in 
HCM patient myocardium and correlates with LV dilation and 
systolic dysfunction (Nakamura et al., 2005), while inhibition 
of these pathways through direct or indirect measures attenuates 
the disease phenotype in animal models of HCM (Senthil et 
al., 2005; Marian et al., 2006; Lombardi et al., 2009; Wilder et 
al., 2015). N-acetylcysteine (NAC), a precursor of glutathione 
(the most abundant intracellular defense mechanism against 
oxidative damage), is one of the most studied compounds for 
attenuating oxidative stress, and it has been shown to reverse 
established LVH and fibrosis, and reduce susceptibility to 
ventricular arrhythmia (Marian et al., 2006; Lombardi et al., 
2009). NAC can also attenuate diastolic dysfunction that may 
arise through oxidative modifications of myofilament proteins 
(Wilder et al., 2015; Ryba et al., 2019; Ramachandra et al., 
2022). Despite these beneficial effects, NAC had no major 
impact on indices of LVH and fibrosis in HCM patients (Marian 
et al., 2018). It is important to note most of these patients 
presented with minimal symptoms and did not have exercise 
intolerance; and hence, whether NAC can relieve symptoms 
or prevent disease progression despite the lack of reduction in 
fibrosis remains to be determined. Interestingly, fingolimod, 
a sphingosine-1-phosphate receptor modulator used for 
treating multiple sclerosis, decreased oxidative modifications 
of myofilament proteins, which in turn attenuated diastolic 
dysfunction, but with no reduction in fibrosis (Ryba et al., 
2019). These findings may suggest that restoring myofilament 
function is sufficient for improving cardiac function in the 
setting of HCM.  
Metabolic modulators 
Elucidating common pathophysiological mechanisms across 
diverse HCM genotypes is crucial for developing therapies 
that can promote maximum response across the entire clinical 
spectrum. Impaired myocardial energetics is considered an 
early and common driver of HCM (Ramachandra et al., 2019; 
Ramachandra et al., 2021b) independent of family history 
(Jung et al., 2000), clinical status (Jung et al., 1998), and 
patient genotype (Crilley et al., 2003). In support, reduction in 
myocardial phosphocreatine/adenosine triphosphate (PCr/ATP) 
ratios and increases in inorganic phosphate/phosphocreatine 
(Pi/PCr) ratios are found in asymptomatic patients (Jung et 
al., 1998), and in carriers with different sarcomere mutations, 
including those who are yet to develop LVH (Crilley et al., 
2003). This energy deficit is exacerbated during exercise and 
may explain the development of diastolic dysfunction in HCM 
patients during peak exercise (Dass et al., 2015). Impaired 
myocardial energetics was initially viewed as a result of 
ischemia mediated decreases in oxygen supply (Sieverding 
et al., 1997); however, findings from several animal models 
suggest the induction of energetic abnormalities and diastolic 
dysfunction are more likely to be primary effects of sarcomere 
mutations and are unlikely to be secondary consequences of 
LVH (Spindler et al., 1998) (Figure 1). Indeed, sarcomere 
mutations do facilitate chronic mismatch between ATP 
synthesis and ATP consumption by overall crossbridge activity; 
and hence, it is not surprising that inefficient use of ATP at 

the myofilament level could provoke cardiac dysfunction 
with the severity dependent on the type of mutation and the 
amount of mutant protein in the sarcomere (Montgomery et 
al., 2001; Javadpour et al., 2003). While these studies imply 
energetic impairment is a direct consequence of alterations of 
the myocardium, other studies, albeit controversial, suggest the 
low myocardial PCr/ATP ratios are a result of fibrosis (Esposito 
et al., 2009; Petersen et al., 2009). However, an argument can 
be made that some regions of the myocardium are more energy 
deprived than others, which is supported by findings whereby 
increased myofilament calcium sensitivity (due to sarcomere 
mutations) rapidly precipitated energy deprived regions during 
stress, which in turn decreased intercellular coupling and 
increased arrhythmia susceptibility (Huke et al., 2013).
     Energy and metabolism are tightly coupled cellular 
processes; and hence, energetic impairment is usually 
associated with perturbed metabolism. Indeed, comprehensive 
multiomics profiling of LV septal myectomy samples revealed 
substantial dysregulation in fatty acid metabolism, reduction 
of acylcarnitines, and accumulation of free fatty acids that 
coincided with elevated levels of oxidative stress, mitochondrial 
damage, and reduced mitochondrial clearance (Ranjbarvaziri 
et al., 2021). Other studies also report a reduced capacity for 
fatty acid oxidation, but an increase in ketone bodies and 
branched chain amino acids may suggest the use of alternate 
fuels in HCM hearts (Previs et al., 2022). Since these metabolic 
derangements were observed across diverse genotypes, 
therapeutic strategies aimed at normalizing myocardial 
energetics and metabolism could have immediate clinical 
implications. In support, the carnitine palmitoyl transferase-1 
inhibitor, perhexiline, attenuated myocardial energy impairment, 
improved diastolic function, and increased exercise capacity in 
patients with symptomatic nHCM (Abozguia et al., 2010), and 
is being evaluated for its ability to promote LVH regression 
(Ananthakrishna et al., 2021). Despite these promising 
outcomes, modalities that suppress fatty acid oxidation could 
be potentially ineffective or harmful given that fatty acid 
metabolism is perturbed in HCM hearts (Ranjbarvaziri et al., 
2021; Previs et al., 2022). In support, trimetazidine, an inhibitor 
of fatty acid β-oxidation decreased exercise capacity in patients 
with nHCM (Coats et al., 2019).   
Cardiac myosin inhibitors
Hypercontractility is another pathological feature of HCM, 
which is attributed to the destabilization of the myosin super-
relaxed (SRX) state (Toepfer et al., 2019; Vander Roest et 
al., 2021). In healthy hearts, myosin undergoes physiological 
shifts between the SRX conformation (energy conserving) 
and the disordered relaxed state (DRX) conformation (energy 
consuming), while in hypertrophied hearts, pathogenic 
mutations increase the proportion of myosins in the DRX 
state evoking hypercontractility, impaired relaxation, and 
increased energy consumption that precipitates higher rates of 
heart failure and arrhythmias (Toepfer et al., 2020) (Figure 1). 
Destabilization of the SRX state is not restricted to carriers with 
myosin mutations and is found to occur in animal models with 
mutations in cardiac myosin-binding protein C (McNamara et 
al., 2016; Toepfer et al., 2019), cardiac myosin essential light 
chain (Sitbon et al., 2020), and ventricular regulatory light 
chain (Yadav et al., 2019; Yuan et al., 2022). 
     Given the DRX state facilitates crossbridge formation with 
greater ATP consumption, novel cardiac myosin inhibitors 
have been developed to reduce myosin ATPase activity. Since 
its discovery, where it attenuated the development of LVH, 
cardiomyocyte disarray, and fibrosis in mice (Green et al., 
2016), MYK-461 (mavacamten) is now a viable therapeutic 
modality for HCM. Like previous therapies, mavacamten 
demonstrated a more pronounced therapeutic effect in mice 
only when administered prior to the onset of overt LVH (pre-
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hypertrophic state), which may imply maximum benefit could 
be achieved in patients with less established HCM. Strikingly, 
mavacamten has been associated with favorable outcomes in 
patients with and without obstruction (Heitner et al., 2019; 
Ho et al., 2020; Olivotto et al., 2020). In the EXPLORER-
HCM clinical trial, which evaluated the effect of mavacamten 
in symptomatic patients with obstruction, this agent was 
associated with improved New York Heart Association 
functional class, better exercise capacity, less LVOT 
obstruction, and improved health status (Olivotto et al., 2020; 
Spertus et al., 2021). Interestingly, sub-study analysis revealed 
mavacamten treatment reduced LV mass and LV wall thickness, 
as well as left atrial volume index (Saberi et al., 2021), with 
accompanying improvements in diastolic function and systolic 
anterior motion of the mitral valve (Hegde et al., 2021; Cremer 
et al., 2022). Consistently, mavacamten treatment in patients 
without obstruction was associated with improvements in 
myocardial wall stress as evidenced by reductions in NT-
proBNP and troponin I levels (Ho et al., 2020).
     Mechanistically, mavacamten is thought to decrease force 
production, inhibit myosin ATPase activity, and accelerate 
cross-bridge detachment rate (Anderson et al., 2018; Mamidi 
et al., 2018; Rohde et al., 2018; Awinda et al., 2021), but 
as to how this agent attenuates LVH, fibrosis, and diastolic 
dysfunction warrants further investigation. Mavacamten 
treatment may also reduce the need for septal reduction therapy 
in highly symptomatic patients with obstruction (Desai et 
al., 2023). Finally, when evaluated in patients on β-blockers, 
mavacamten improved heart-rate independent measures, but not 
indices that were heart-rate dependent, including peak exercise 
capacity (Wheeler et al., 2023). This finding may argue for dose 
reduction or withdrawal of β-blockers to gain maximum effect 
of this agent, however such decisions should be considered 
carefully with respect to patient history. 
     In summary, several mechanism-driven therapeutic 
modalities have been identified in animal models of HCM. 
The poor clinical translation of these modalities highlights 
the large gap between preclinical target discovery and 
clinical implementation. Mavacamten seems to be an 
exception, providing symptom relief and reversing established 
pathological features in clinical cohorts. However, if this agent 
is to be considered a mainstay therapy, careful dosing will be 
required to prevent reductions in LV ejection fraction and atrial 
fibrillation (Heitner et al., 2019). 

Future Perspectives 
HCM is a heterogeneous disease with differences in genetic 
etiology underpinning symptom severity and patient response 
to pharmacotherapies. Indeed, an association between position 
of mutation and disease severity has been described in early 
studies, whereby different mutations in myosin heavy chain 
beta (β-MHC) revealed variability in the nature and extent of 
functional impairment in contractile properties (Lankford et al., 
1995). Similarly, different mutations in troponin T precipitate 
different alterations in muscle fibers (Hernandez et al., 2005). 
Moreover, when the impact of mutations on cardiac structure 
and function were evaluated in pre-hypertrophic individuals, 
the R92W troponin T mutation was associated with increased 
systolic function, the A797T β-MHC mutation with reduced 
diastolic function, and the R403W β-MHC mutation with both 
reduced systolic and diastolic function (Revera et al., 2008). 
These findings support the need for interrogating the causal 
effect of novel mutations, especially those prevalent in specific 
ethnic populations (Viswanathan et al., 2018; Pua et al., 2020; 
Wu et al., 2020), and which are of non-sarcomere origin, as this 
will facilitate the development of mechanism-driven therapies. 
     Treatment with mavacamten, or next-in-class, aficamten 
(Maron et al., 2023) have provided substantial benefits in 

symptomatic patients; however, the exclusion of individuals 
with severe heart failure symptoms and the low representation 
of non-Caucasian participants and children in these studies 
argues whether these agents can provide universal benefits 
across the entire clinical spectrum. Such concerns are derived 
from past findings whereby several therapeutic compounds that 
improved cardiac structure and function in animal models of 
HCM were unable to promote meaningful benefits in humans. 
For several decades, animal models with various pathogenic 
mutations (predominantly in contractile proteins) have helped 
to increase our understanding of HCM, and while these 
translational disparities could be attributed to shortcomings 
of the respective clinical trials, it must be acknowledged that 
animal models may not completely represent human diseases. 
For instance, most mouse models of HCM fail to develop overt 
LVH and/or fibrosis amongst other clinical features (Gannon 
and Link, 2021); and hence, it may be prudent to place greater 
emphasis on studying human cells or tissue to elucidate 
the causal effects of novel mutations and to discover new 
therapeutic targets. 
     Human induced pluripotent stem cells (iPSCs) offer an 
unprecedented opportunity to study human physiology and 
disease at the cellular and organ level. Human iPSCs are 
pluripotent, which means they can be differentiated into any 
cell type of the human body, and being stem cells, they can 
be expanded into millions of cell progeny, circumventing the 
limitations associated with primary tissues. Being derived 
from patients, iPSCs allow for the identification and validation 
of therapeutic targets across diverse genotypes, thereby 
accounting for clinical heterogeneity and maximizing patient 
response to novel therapeutics, while mitigating adverse 
effects. We and others have derived iPSCs from HCM patients 
with different mutations, and remarkably, cardiomyocytes 
differentiated from these iPSCs show clinical hallmarks, 
including cellular hypertrophy, arrhythmia, myofibril disarray, 
calcium mishandling, and impaired relaxation (Lan et al., 
2013; Viswanathan et al., 2018; Prondzynski et al., 2019; Wu 
et al., 2019; Zhou et al., 2019; Ramachandra et al., 2022). As 
expected, different mutations evoke different pathological 
features in these human models, reaffirming the need for 
mechanism-driven therapies (Prajapati et al., 2018; Smith et 
al., 2018; Bhagwan et al., 2020). Importantly, these iPSC-
derived HCM models have provided new mechanistic insight 
into disease pathogenesis (Qiu et al., 2021; Vander Roest et al., 
2021; Ramachandra et al., 2022), and functionally characterized 
the pathogenicity of novel mutations, both in sarcomere and 
non-sarcomere encoding genes (Liu et al., 2014; Pua et al., 
2020; Kondo et al., 2022), positioning these human cellular 
models as effective tools for developing patient-tailored 
therapies. Establishing patient-specific iPSC models for every 
uncharacterized HCM genotype will be extremely challenging, 
and so for now priority could be given for novel mutations 
with high risk of pathogenicity as determined by combined 
assessment of in silico modelling, population prevalence, and 
clinical severity.
Gene therapy as a potential future treatment modality for 
HCM
Recently, the effect of genomic base editing to correct the 
pathogenic MYH7 R403Q mutation has been evaluated in two 
independent studies, where this modality was able to correct 
and rescue pathological phenotypes in HCM patient-derived 
cardiomyocytes and in mice with HCM (Chai et al., 2023; 
Reichart et al., 2023) (Figure 1). These studies mark the first 
demonstration of efficient single nucleotide gene correction in 
postnatal mammalian cardiomyocytes in vivo, and highlight 
permanent genomic correction of all cardiomyocytes is not 
compulsory to prevent the onset of HCM. Gene editing could 
potentially be a one-time treatment modality for HCM patients 
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and it would be interesting to see whether this approach can 
also attenuate pathological features in more established cases, 
although dosing will require rigorous calculations to minimize 
bystander editing and prevent adverse effects (Reichart et 
al., 2023). In summary, gene editing could serve as a very 
specific therapeutic modality for individuals with known 
pathogenic mutations, and as we interrogate the causality of 
other mutations in models relevant to human physiology there 
is much opportunity to develop mechanism-driven therapies for 
HCM. 

Conclusions
Recent findings highlight conventional pharmacotherapies 
as being ineffective in improving long-term prognosis in 
HCM patients, which can be attributed to their non-selective 
mode of action and their inability to target the underlying 
pathophysiology. Much of our mechanistic understanding 
of HCM is centered on studies interrogating the genotype-
phenotype relationship of a few specific pathogenic sarcomere 
variants. However, it must be acknowledged, we still lack 
substantial understanding of many other pathogenic sarcomere 
variants, non-sarcomere variants, and variants prevalent in 
non-Caucasian populations. To improve health outcomes in 
HCM patients, we should strongly consider moving away 
from the one-size fits all approach of using non-selective 
pharmacotherapies and focus on developing mechanism-
driven therapies based on the genetic background of each 
patient. A workflow combining genetic data, in silico modeling, 
and patient-specific iPSC models could (1) give impetus for 
unravelling the complexity of HCM, (2) help to risk stratify 
genotype-positive/phenotype-negative carriers, and (3) facilitate 
the development of more effective therapies that can potentially 
prevent disease progression and improve health outcomes in 
patients with established HCM. 
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